

# 超音波テスター(音圧測定システム)



## 超音波システム研究所

### サンプリング時間の表示方法

#### 入力

data11 <- read.table("C:/2011/201101.csv", skip=**0**, sep="," , nrows=10 ) data11

応答(パソコンの画面表示) V1 V2V3 Channel A 1 Time Channel B  $\mathbf{2}$ (ms)(V) (V)3  $0.0000000 \quad 0.33310950 - 0.07290872$ **0.00256000** 0.07199316 0.03616443 4 0.00512000 -0.16211430 -0.00927763 5 0.00768000 0.06299020 -0.091097756 7 0.01024000 0.05398724 0.136112608 0.01280000 - 0.16211430 - 0.154301609 0.01536000 0.10800500 - 0.22745450 $10\ 0.01792000$   $0.27008880\ -0.23654900$ > 1 秒 / 0.00256000 ms = 390.625 kHz 390 / 2 = 195 kHzdata11 <- read.table("C:/2011/2011103.csv", skip=0, sep=",", nrows=10) data11 V2V1 V3 Time Channel A Channel B 1  $\mathbf{2}$ (ms)(V) (V) 3 0.0000000 -0.03604236 -0.11838130 0.00064000 - 0.04504532 - 0.06381420 $\int \frac{1}{2} \int \frac{$ 4 0.00128000 -0.05404828 -0.02746666 5 6 0.00192000 - 0.07205420 - 0.027069927 0.00256000 - 0.05404828 - 0.090670498 0.00320000 -0.03604236 0.10885950 9 0.00384000 - 0.01803644 - 0.09976501 $10\ 0.00448000\ -0.03604236\ 0.07248146$ 1 秒/0.00064000ms = 1562. 5 k Hz 1562/2= 781 k Hz 注:解析には下記ツールを利用します 注:OML(Open Market License) https://www.ism.ac.jp/ismlib/jpn/ismlib/license.html 注:TIMSAC(TIMe Series Analysis and Control program) https://jasp.ism.ac.jp/ism/timsac/ 注:「R」フリーな統計処理言語かつ環境 https://cran.ism.ac.jp/

### <サンプリング時間の設定は自動調整されます>

| サンプリング                  | 時間 解析グラフ 0.5 の周波数                                                                                       |
|-------------------------|---------------------------------------------------------------------------------------------------------|
| 1秒/ <b>1s = 1Hz</b>     | 1/2 = 0.5 Hz                                                                                            |
| • • •                   |                                                                                                         |
| 1秒/0.02 <b>ms =</b>     | $50 \mathrm{k}\mathrm{Hz}$ $50/2 = 25 \mathrm{k}\mathrm{Hz}$                                            |
| 1秒/0.01 <b>ms =</b>     | $100 \mathrm{k}\mathrm{Hz}$ $100 / 2 = \frac{50 \mathrm{k}\mathrm{Hz}}{2}$                              |
| 1 秒/0.0050048 <b>ms</b> | $= 200 \mathrm{k}\mathrm{Hz} \ 200/2 = 100 \mathrm{k}\mathrm{Hz}$                                       |
| 1 秒/0.0020032 <b>ms</b> | $= 500 \mathrm{k}\mathrm{Hz}$ $500 \mathrm{/2} = 250 \mathrm{k}\mathrm{Hz}$                             |
| 1 秒/0.0010048 <b>ms</b> | $= 995 \mathrm{k}\mathrm{Hz}$ $995/2 = 497 \mathrm{k}\mathrm{Hz}$                                       |
| 1 秒/0.0005056 <b>ms</b> | = 1977 k Hz 1977 $/ 2 =$ 988 k Hz                                                                       |
| 1 秒/0.0002048 <b>ms</b> | $= 4882 \mathrm{k} \mathrm{Hz}  4882 / 2 = 2441 \mathrm{k} \mathrm{Hz}  (2.  4\mathrm{MH} \mathrm{z} )$ |
| 1 秒/0.0001024 <b>ms</b> | $= 9765 \mathrm{k}\mathrm{Hz}  9765 /2 = 4882 \mathrm{k}\mathrm{Hz} (4. 8\mathrm{MH}\mathrm{z})$        |
| 1 秒/0.0000512 <b>ms</b> | = 19531  k Hz  19531 / 2 = 9765  k Hz (9. 7 MH z)                                                       |
| 1 秒/0.0000256 <b>ms</b> | = 39062  k Hz  39062 / 2 = 19531  k Hz  (20  MH z)                                                      |
| 1 秒/0.0000128 <b>ms</b> | = 78125  k Hz  78125 / 2 = 39062  k Hz  (39MH z)                                                        |
| • • •                   |                                                                                                         |
| 1秒/0.016 <b>µs</b> =    | 62.5 MHz $62.5 / 2 = 31.25 MHz$                                                                         |
| 1秒/0.008 <b>µs</b> =    | 125MHz $125/2 = 62.5MHz$                                                                                |
| 1秒/0.004µs =            | 250MHz 250/2= $125MHz$                                                                                  |
| 1秒/0.002 <b>μs</b> =    | 500 MHz $500 / 2 = 250 MHz$                                                                             |
|                         |                                                                                                         |



## 音圧レベルの表示

入力

data11 <- read.table("C:/20111/2011102.csv", skip=6, sep=",") mean(data11\$V2) mean(data11\$V3) var(data11\$V2) var(data11\$V2) range(data11\$V2) range(data11\$V2) range(data11\$V3)

#### 応答(パソコンの画面表示)

| <pre>&gt; data11 &lt;- read.table("C:</pre> | /20111022w/20111022-0412.csv", skip=6, sep=",") |
|---------------------------------------------|-------------------------------------------------|
| > mean(data11\$V2)                          | CH1 の平均値                                        |
| [1] -0.001047526                            |                                                 |
| > mean(data11\$V <mark>3</mark> )           | CH2 の平均値                                        |
| [1] 3.430622e-05                            |                                                 |
| > var(data11\$V2)                           | CH1 の分散値                                        |
| [1] 0.009286384                             |                                                 |
| > var(data11\$V <mark>3</mark> )            | <b>CH2</b> の分散値                                 |
| [1] 0.001448241                             |                                                 |
| > range(data11\$V2)                         | CH1 の最小・最大値                                     |
| [1] -0.4412366 0.4141362                    | 2                                               |
| > range(data11\$V3)                         | <u>CH</u> 2の最小・最大値                              |
| [1] -0.1547288 0.1361126                    | 3                                               |
| >                                           |                                                 |

注意

統計処理を行うために、測定値が自動的に、規格化(正規化)されています バイスペクトルについて理解が深まるまでは

#### 最大・最小値、分散値、平均値 を利用することを推奨します

絶対値としての音圧は、測定データのグラフから読み取ってください その値に対する平均や分散を上記の処理で推定して利用します





data11 <- read.table("C:/20191220/191220-0018/20191220-0018\_15.csv", skip=6, sep=",") mean(data11\$V2) mean(data11\$V3) var(data11\$V2) var(data11\$V3) range(data11\$V2) range(data11\$V3) > > data11 <- read.table("C:/20191220/20191220-0018/20191220-0018 15.csv",</pre> > mean(datall\$V2) [1] -0.6003619 > mean(datall\$V3) [1] -0.3157933 > var(datall\$V2) [1] 5486.412 > var(datall\$V3) [1] 5.714348 > range(data11\$V2) [1] -181.1024 179.5276 > range(datall\$V3) [1] -7.874015 7.874015 > グラフ青 音圧レベル 360mV グラフ赤 音圧レベル 16mV







音圧・周波数の変化を目視確認する







様々な条件で、繰り返し確認すると、 音圧データのグラフを見ることで解析結果は推測できます

以上