(オシロスコープ100Hzタイプを例にした)
 操作手順書(簡易版) Type2
 音圧測定解析システム「超音波テスターNA」

<オシロスコープ>

USBオシロスコープ Picoscope2207A 分解能 8bit チャンネル数 2ch
・帯域幅(-3dB):100MHz (100MHzタイプ)
・最大サンプリングレート:1G
・バッファメモリ:40kサンプル
USBオシロスコープ Picoscope2204A 分解能 8bit チャンネル数 2ch
・帯域幅(-3dB):10MHz (超音波テスター標準タイプ)
・バッファメモリ:8kサンプル

説明書は、必要な時に再読して下さい。

超音波システム研究所

Ver 2.0

1:接続

2:オシロスコープを立ち上げる

3:設定

4: 測定

超音波の音圧測定解析システム(オシロスコープ100MHzタイプ) ultrasoniclabo

https://youtu.be/0cQa9RcWQnc

https://youtu.be/EyJY5tHPq1s

ファイル>全波形の保存 PicoScope data file (.psdata) ファイル>全波形に名前をつけて保存(解析用) Microsoft Excel CSV ファイル (.csv)

保存データは、最大32画面のデータを含みます

Excel CSV ファイルは、ホルダーに最大32個作成されます

参照

超音波の音圧測定解析システム(オシロスコープ100MHzタイプ) http://ultrasonic-labo.com/?p=17972

5:解析

ダブルクリックして立ち上げる

超音波の音圧測定解析システム(解析操作) ultrasonic-labo

https://youtu.be/2RcXz_xtNu4

解析用テキストファイル (解析用テキストchA.txt)を開く

超音波の音圧測定解析システム(解析操作) ultrasonic-labo

https://youtu.be/uo2PCRF2xIo

解析用テキストchA (テキスト ドキュメント (.txt)) ファイル名「D:/us-data/data2/data2」の場合

```
data11 <- read.table("D:/us-data/data2/data2_01.csv", skip=6, sep=",", nrows=6000)
png(file="D:/us-data/data2/data2_01.png")
plot(data11$V2, main="音圧測定データ chA")
dev.off()
data11 <- read. table ("D:/us-data/data2/data2_01.csv", skip=6, sep=",", nrows=6000)
png(file="D:/us-data/data2/data2sp0001_01.png")
a <- spectrum(data11$V2,method="ar")
plot(a, sub="パワースペクトル")
dev.off()
data11 <- read.table("D:/us-data/data2/data2_01.csv", skip=6, sep=",", nrows=6000)
png(file="D:/us-data/data2/data2bi0001_01.png")
bispec(data11$V2)
dev.off()
data11 <- read.table("D:/us-data/data2/data2_01.csv", skip=6, sep=",", nrows=6000)
png(file="D:/us-data/data2/data2au0001_01.png")
autcor(data11$V2)
dev.off()
data11 <- read.table("D:/us-data/data2/data2_02.csv", skip=6, sep=",", nrows=6000)
png(file="D:/us-data/data2/data2_02.png")
plot(data11$V2, main="音圧測定データ chA")
dev.off()
data11 <- read.table("D:/us-data/data2/data2_02.csv", skip=6, sep=",", nrows=6000)
png(file="D:/us-data/data2/data2sp0001_02.png")
a <- spectrum(data11$V2, method="ar")
plot(a, sub="パワースペクトル")
dev.off()0:49 2010/01/01
data11 <- read.table("D:/us-data/data2/data2_02.csv", skip=6, sep=",", nrows=6000)
png(file="D:/us-data/data2/data2bi0001_02.png")
bispec(data11$V2)
dev.off()
data11 <- read.table("D:/us-data/data2/data2_02.csv", skip=6, sep=",", nrows=6000)
png(file="D:/us-data/data2/data2au0001_02.png")
autcor(data11$V2)
dev.off()
```

(F-) > 2020納品 > 〒スター(NA) > sample > us-data > data1

. . .

(E:) >	2020納品 > テスター(NA) → sample → u	ıs-data > data1						~	ල 🔎 data10
^				$= \underbrace{ \left(\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$				A state of the sta		
	data1sp0001_02	data3au0001_10	data3sp0001_02	data3bi000	data: 10	dat au000 09	ann 101_10	data3bi0001_09	data3_09	data3au0001_08
					争办					
	data3sp0001_09	data3bi0001_08	data3_08	data3au0001_07	data3bi0001_07	data3sp0001_08	data3_07	data3au0001_06	data3bi0001_06	data3sp0001_07
			$= \underbrace{ \left[\begin{array}{c} & & \\ & &$					Reserved to the second		
	data3_06	data3au0001_05	data3bi0001_05	data3sp0001_06	data3sp0001_05	data3_05	data3au0001_04	data3bi0001_04	data3sp0001_04	data3_04
	data3au0001_03	data3bi0001_03	data3sp0001_03	data3_03	data3au0001_02	data3bi0001_02	data3_02	data3au0001_01	data3bi0001_01	data3_01
°										Linu .

結果

測定データに対して、

以下の解析(**自己相関、バイスペクトル、パワースペクトル**)により 超音波の伝搬状態を評価(超音波システム研究所 オリジナル技術)します

https://youtu.be/q0C58L-yiWg https://youtu.be/1hLsBHtq0tg

注:解析には下記ツールを利用します

注:OML(Open Market License)

https://www.ism.ac.jp/ismlib/jpn/ismlib/license.html

注:TIMSAC(TIMe Series Analysis and Control program)

<u>https://jasp.ism.ac.jp/ism/timsac/</u>

[Japanese/English]

TIMSAC for R package

統計数理研究所

2020年07月

1. はじめに

TIMSAC(TIMe Series Analysis and Control program)は,統計数理研究所で開発された時系列データの解析,予測,制御のための総合的プログラ ムパッケージである。オリジナルTIMSAC(TIMSAC-72)は1972年に発表され,その後,TIMSACシレーズとしてTIMSAC-74,TIMSAC-84が Computer Science Monograph に発表された。工業プロセスの最通制御,経済変動の分析等広い分野で実際に利用されている。TIMSACの特徴 としては,情報最現準の考え方を用いた時系列解析プログラムであることが挙げられる。TIMSAC-72ではFPE(Final Prediction Error),TIMSAC-74 以降ではAIC(Akaike Information Criterion),TIMSAC-78のペイズ型モデルではABIC(Akaike Bayesian Information Criterion)も用いられてる。

ー方,Rはフリーな統計処理言語かつ環境である.Rは配列演算を基本に設計されているため多次元配列の扱いに適している上にグラフィック関数も豊 富であり,かつFORTRANやCのサブルーチンを簡単に呼び出せるインタフェースを備えている.そこで,FORTRANで書かれているオリジナルブログ うムの計算処理機能のみをライブラリ化し,R関数を通して入出力を行い,必要であればその解析結果等をRでグラフィック表示することによりデー 夕解析を容易にした.

なお, バージョン 1.2.8のパッケージに含まれていた七つの関数 armaimp(), |sar2(), ngsmth(), tsmooth(), tvvar(), tvsrc(), tvspc() は, パージョ ン 1.3.0では削除した. これらの関数は「FORTRAN77 時系列解析プログラミング」(北川源四郎著/岩波書店)のプログラムをソースとした関数であ り, 同書を基にした他の関数とともにRパッケージ <u>TSSS</u> として公開している.

注:「R」フリーな統計処理言語かつ環境

参考:バイスペクトル

バイスペクトルは

以下のように

周波数 f1、f 2、f1 + f 2のスペクトルの積で表すことができる。 B(f1,f2) = X(f1)Y(f2)Z(f1 + f2)

主要周波数がf1 であるとき、

f1 + f1 = f 2、f1 + f 2 = f3 で表される

f2、f3 という周波数成分が存在すれば バイスペクトルは値をもつ。 これは主要周波数 f1 の

整数倍の周波数成分を持つことと同等であるので、

バイスペクトルを評価することにより、高調波の存在を評価できる。

理論的背景

超音波の検出方法

- 1:超音波の基礎
 - やさしい超音波工学 — 拡がる新応用の開拓 (ケイブックス) 川端昭(著),高橋 貞行(著),一ノ瀬昇(著) 出版社:工業調査会;増補版(1998/01)
- 2:非線形性の解析
 - **叩いて超音波で見る**—非線形効果を利用した計測 佐藤 拓宋(著)出版社:コロナ社(1995/06)
 - ダイナミックシステムの統計的解析と制御 赤池 弘次(著),中川東一郎(著) 出版社:サイエンス社(1972)
- 3:弾性波動への適用
 - 「弾性波動論の基本」 田治米 鏡二(著) 槇書店(1994/10) 「弾性波動論」 佐藤 泰夫(著)岩波書店(1978/03)

音圧解析の初歩

サンプリング時間の表示方法

入力

data11 <- read.table("C:/2011/201101.csv", skip=**0**, sep="," , nrows=10) data11

応答(パソコンの画面表示) V1 V2V3 Time 1 Channel A Channel B $\mathbf{2}$ (ms)(V) (V)3 $0.0000000 \quad 0.33310950 - 0.07290872$ **0.00256000** 0.07199316 0.03616443 4 0.00512000 - 0.16211430 - 0.009277635 6 0.00768000 0.06299020 - 0.091097757 0.01024000 0.05398724 0.136112608 0.01280000 - 0.16211430 - 0.154301609 0.01536000 0.10800500 - 0.22745450 $10\ 0.01792000$ $0.27008880\ -0.23654900$ > 1 秒 / 0.00256000 ms = 390.625 kHz 390 / 2 = 195 kHzdata11 <- read.table("C:/2011/2011103.csv", skip=0, sep=",", nrows=10) data11 V1 V2V3 Time Channel A Channel B 1 2(ms)(V)(V) 3 0.0000000 -0.03604236 -0.11838130 0.00064000 - 0.04504532 - 0.063814204 0.00128000 -0.05404828 -0.02746666 5 6 0.00192000 - 0.07205420 - 0.027069927 0.00256000 - 0.05404828 - 0.090670498 0.00320000 -0.03604236 0.10885950 9 0.00384000 - 0.01803644 - 0.09976501 $10\ 0.00448000\ -0.03604236\ 0.07248146$ 1 秒/0.00064000ms = 1562. 5 k Hz 1562/2= 781 k Hz 注:解析には下記ツールを利用します 注:OML(Open Market License) https://www.ism.ac.jp/ismlib/jpn/ismlib/license.html 注:TIMSAC(TIMe Series Analysis and Control program) https://jasp.ism.ac.jp/ism/timsac/ 注:「R」フリーな統計処理言語かつ環境 https://cran.ism.ac.jp/

<サンプリング時間の設定は自動調整されます>

サンプリング	時間 解析グラフ 0.5 の周波数
1秒/ 1s = 1Hz	1/2 = 0.5 Hz
• • •	
1秒/0.02 ms =	$50 \mathrm{k}\mathrm{Hz}$ $50 / 2 = 25 \mathrm{k}\mathrm{Hz}$
1秒/0.01 ms =	$100 \mathrm{k}\mathrm{Hz}$ $100 /2 = \frac{50 \mathrm{k}\mathrm{Hz}}{2}$
1 秒/0.0050048 ms	$= 200 \mathrm{k}\mathrm{Hz}$ $200/2 = 100 \mathrm{k}\mathrm{Hz}$
1 秒/0.0020032 ms	$= 500 \mathrm{k}\mathrm{Hz}$ $500 \mathrm{/2} = 250 \mathrm{k}\mathrm{Hz}$
1 秒/0.0010048 ms	$= 995 \mathrm{k}\mathrm{Hz}$ $995/2 = 497 \mathrm{k}\mathrm{Hz}$
1 秒/0.0005056 ms	= 1977 k Hz 1977 $/2 =$ 988 k Hz
1 秒/0.0002048 ms	= 4882 k Hz 4882 / 2 = 2441 k Hz (2. 4MH z)
1 秒/0.0001024 ms	= 9765 k Hz $9765/2 = 4882 \text{ k Hz}$ (4. 8MH z)
1 秒/0.0000512 ms	= 19531 k Hz 19531 / 2 = 9765 k Hz (9. 7 MH z)
1 秒/0.0000256 ms	= 39062 k Hz 39062 / 2 = 19531 k Hz (20 MH z)
1 秒/0.0000128 ms	= 78125 k Hz 78125 / 2 = 39062 k Hz (39MH z)
• • •	
1秒/0.016 µs =	62.5MHz 62.5/2= 31.25MH z
1秒/0.008 µs =	125MHz 125/2= <mark>62.5MH z</mark>
1 秋 / 0 00/ // 9 =	$250MH_7$ $250/2 = 125MH_7$
$1 \frac{1}{12} / 0.004 \mu S - 1.15 / 0.009 \pi $	200MHZ 200/2 = 120MHZ
$1 / y / 0.002 \mu s =$	$\frac{1}{2} \frac{1}{2} \frac{1}$

音圧レベルの表示

入力

data11 <- read.table("C:/20111/2011102.csv", skip=6, sep=",")
mean(data11\$V2)
mean(data11\$V3)
var(data11\$V2)
var(data11\$V3)
range(data11\$V2)
range(data11\$V2)</pre>

応答(パソコンの画面表示)

<pre>> data11 <- read.table("C:</pre>	/20111022w/20111022-0412.csv", skip=6, sep=",")
> mean(data11\$V2)	CH1 の平均値
[1] -0.001047526	
> mean(data11\$V <mark>3</mark>)	CH2 の平均値
[1] 3.430622e-05	
> var(data11\$V2)	CH1 の分散値
[1] 0.009286384	
> var(data11\$V <mark>3</mark>)	CH2の分散値
[1] 0.001448241	
> range(data11\$V2)	CH1 の最小・最大値
[1] -0.4412366 0.4141362	2
> range(data11\$V <mark>3</mark>)	CH2の最小・最大値
[1] -0.1547288 0.1361126	3
>	

注意

統計処理を行うために、測定値が自動的に、規格化(正規化)されています バイスペクトルについて理解が深まるまでは

最大・最小値、分散値、平均値 を利用することを推奨します

絶対値としての音圧は、測定データのグラフから読み取ってください その値に対する平均や分散を上記の処理で推定して利用します


```
data11 <- read.table("C:/20191220/191220-0018/20191220-0018_15.csv", skip=6,
sep=",")
mean(data11$V2)
mean(data11$V3)
var(data11$V2)
var(data11$V3)
range(data11$V2)
range(data11$V3)
>
> data11 <- read.table("C:/20191220/20191220-0018/20191220-0018 15.csv",</pre>
> mean(datall$V2)
[1] -0.6003619
> mean(datal1$V3)
[1] -0.3157933
> var(datall$V2)
[1] 5486.412
> var(data11$V3)
[1] 5.714348
> range(datall$V2)
[1] -181.1024 179.5276
> range(datall$V3)
[1] -7.874015 7.874015
>
    グラフ青 音圧レベル 360mV
    グラフ赤 音圧レベル 16mV
```

```
以上
```